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ABSTRACT: Upper and lower bounds are determined for pressure vari- 
ation with constant flow and for flow variation at constant pressure. 
A solution of the problem based on the averaging method is also 
presented. Graphs of the characteristic theoretical pressure variation 
and experimental curves for the Kyurovdag pool are given. 

1. The development of hydrodynamic methods for investigating 
wells drilled into porous-fractured reservoirs is based on the solution 
of the following two principal problems: 1) to find the pressure vari- 
ation Ap(t) when the steady state of the bed is disturbed by a sharp but 
constant change in the well flow rate Aq0; 2) to find the change in flow 
rate Aq(t) when the steady state is disturbed by a sharp but constant 
change in pressure Ap0. 

Let the function U(r, t) denote the deviation of the pressure in the 
joints of the disturbed bed from the steady-state value. In porous- 
fractured media, with negligibly small joint compressibility, the func- 
tion U(r, t) satisfies the differential equation 

c)W"U OU 
~V~"U-- • Ot - -  Ot ' (1.1) 

derived in [1]. Here, VZU : (1/r)0/0r(r 0U/'0r), r is the radiai distance 
from the welI into the bed, t is the time, z is the piezoconductivity, 
r is a characteristic of the medium with the dimension of time, the 
so-called lag. The lag is related to the permeability of the joints k, 
the mass transfer coefficient of the joints, and the blocks a by the 
expression: r = k / ~ a .  

Mathematically, problem (1) can be formulated as follows: to 
solve Eq. (1.1) with the initial and boundary conditions [2]: 

2~Ich (r OU U (r, t = O) = O, - -  ~ -gF],.=~, Aqo, 

rY ( r - -  ~ ,  t )=O.  

Here, kh/p is the hydroconductivity of the bed and r I is the radius of 
the we l l  The second boundary condition has been introduced in the 
given form because the first phase of seepage is being considered. 

The Laplace transform of the pressure change 

A F Ko[~(~)l l 
ap  (,9 = ~ qo L,~ (*) th [~ (~)1] 

(~(,)=[t ,~ l,,~ . 

Here, s is the Laplace transform parameter, K 0 and K~ are the stan- 
dard notations for the Macdonald functions of zeroth and first order, 
respectively. 

Let F(m r, mr) denote the inverse transform of the expression in 
square brackets from (1.2). The presence of the factor m in front of 
r and t is dictated by the similarity theorem of Laplace operational 
calculus [3]. Henceforth, this will be called the pressure function of 
the bed and will, for simplicity, be denoted by Fr(mt ). As follows 
from (1.1) or (1.2), that, at r = 0, the function F0(mt ) is nothing other 
than the pressure function of a porous bed [4], the explicit expression 
being well known (as a function of time). 

Problem (2) is formulated mathematically as follows: to solve Eq. 
(1,1) with the initial and boundary conditions 

g ( r ,  t =  O) = O, U ( r =  r~, t) = kpo , 

U ( r = ~ , t ) = 0 .  

Here again, the form of the second boundary condition is deter- 
mined by the fact that we are concerned with the first phase of seepage. 

in Laplace transforms we have 

2:,ka Apo [-~ (~) K~ [~ (*)l ] 
a q ( s ) = T  L sKo[r J (1. 3) 

Let 4~(mr, mt) denote the imerse transform of the expression with- 
in the square brackets of (1.3). Here, the presence of the factor m in 
front of r and t follows from the same similarity theorem. Henceforth 
this function will be called the well flow function and will be denoted 
by 4,r(mt). Obviously, r ) is nothing other than the familiar flow 
function of a porous bed. 

In accordance with the definition of Fr(mt), when r = 0 it follows, 
from (1.2), that 

~. e S~Fo(m:)d: == 
Ko [~(o)1 

s,~ (o) K: [~ (O)l --- 
o 

c o  

= I e-V(~ F0 (m~) d~. ( I .  4) 

Substituting g(r) for g(0), after simple transformations we obtain 

Ko [~ (~)1 ~ e -r~:')m~ Fo (rn-~O d~ (1.6) s~ (T) K~ [~ ('r)] - -  
0 

Let the inverse transform of ms-:~Z(r)exp [--~Z(r)mo be P(t, o). 
Then, in accordance with [3], 

P ( t  a ) = - r l e x p  [ - - ( t .+~) - r : ]  Io(2 ]/IG/"~"-)~ (1.6) 

where I 0 is a modified Bessel function of order zero. 
Going over to inverse transforms on both sides of (1.5), we obtain 

the Lntegral representation of the pressure function 

co  

Y~ (m0 = f P U, ~) *% (rn~) & ,  (1.7) 
o 

Similarly, 

co  

0 T (rot) = I P(t, :) Oo (m~) dz, (1. 8) 
o 

Since [5] Jensen inequalities can be applied to them, integral rep- 
resentations (1.7) and (1.8) can be used to find the upper aud lower 
bounds of the pressure and flow functions of a porous-fractured bed. 
As will be shown below, the upper and lower bounds thus obtained dif- 
fer only slightiy, especially at large times. The actual method of ob- 
taining them can be used to solve a fairly wide range of problems in 
subsurface hydraulics. 

2. In this section, we establish certain results required insubsequent 
constructions. 

The function F0(mt ) can be approximately represented as 

t 0 = rot; y : 1. 781. . .  is EuIer's constant. 

Since the principal terms of the asymptotic expansion of the func- 
tion F0(t0) and approximation (2.1) coincide both at small and large 
vaIues of the dimensionless parameter to, for these values of to, the 
error of (2.1) is negligible. As may be seen from Table i, for other 
values of t o the error is also small and does not exceed 0.5%. 

In [4], it was shown that, over the entire range of variation of the 
dimensionless parameter, ~0(t0) is represented with an error of not 
more than 1.2~# by the formula 

(Do (to) = tin (t + ~ ) l - : .  (2.2) 

in view of the negligible error of approximations (2.1) and (2.2) 
in applied problems, it is preferable not to differentiate between them 
and the exact expressions for the pressure and flow functions of a porous 
bed, which are inconvenient both for calculation purposes and for in- 
vestigation. 
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Table 1 

mt  ~F. Fo r % 

0.3 
0.5 
1.0 
2.5 
5.0 

t0.0 
20.0 
25.0 

t00.0 
200.0 
400.0 

1000.0 

0.501 
0.6t5 
0.797 
t . t05 
1.365 
t.657 
1.965 
2.066 
2.730 
3.068 
3.420 
3.864 

0.503 
0.6t6 
0.802 
1.t01 
t.362 
1.65t 
1.960 
2.067 
2.723 
3.064 
3.406 
3.86 

--0.3 
- 0 . 3  
- 0 . 5  
+ 0 .  t 
+ o . t  
+0.4 
+0.3 
- -0 . t  
+o.~ 
+0.2  
+0 .5  
+ o . l  

We consider the functions 

] ( x ) = l n ( l + a z ) + - ~ - l n - - ~ -  ~ , a =  

( p ( x ) = l n  - l ( l + b x ) ,  b =  ~ .  (2.3) 

The following assertions are directly verifiabIe: f(x) and ~0(x -1) are 
convex upwards at all x >- 0 and the functions 9C(e x) and ~o(e x) are con- 
vex downwards for --r162 < x < m 

Let Pn be a system of positive numbers, where 1 -< n ~ N, and let 
Tx n be an averaging operator defined as 

Txn ~ pnXn Pn T- lxn  = , 
\ i \ 1 / ' T i n  

Then, for any bounded system of positive numbers, we have the 
Jensen inequalities following from the convexity of the previously 

introduced [5] functions: 

T / ( x n )  < / (Txn), T / ( e x p  Yn) > / (exp Tyn), 

T~  (l/Yn) ~ (P ( T-lyn),  T~  (exp Yn) > q) (exp Tyn), 

Setting Yn = lnxn in the second and fourth of these inequalities 

and Yn = 1/Xn in the third, we obtain 

/ (exp T In xn) < T/ (Xn)  < / (Txn) , 

q) (exp TIn  xn) ~ T ~  (Xn) ~ r ( t /Txn) .  

Let M(t, or) be an arbitrary function of the two variables t and o, 
increasing monotonically with an increase in o such that the 8tieltj es 
integrals introduced below exist. Moreover, let the averaging operator 
Tf(t) be given by 

Then, as it is easy to show by passing to the limit in (2.4), we 
have the following inequalities: 

/(exp T In ]/'/) < T / ( ] / 7 )  < f (T 1/7), 

(~(exp TlnVT) ~ Tr ( ] /O ~ q ) ( t / T ~ ) .  (2.5) 

We introduce the notation 

]/-~a = T ]/~, ~ g  = exp T In g t ,  ]/-~h = t / T VF-I,  (2.6) 

Obviously, the functionals tal /z  > tg l/z > ~hi/z are the arithmetic, 

geometric, and harmonic means, respectively, of the function t t / z .  
Using the fact that f(t t/z) = F0(mt ) and e(t  t/z) = ff0(mt), from (2.5) 

we obtain the following inequalities: 

Y o (mtg) < T F  o (rat), < F o (mte),  

q)o (mtg) ~ Ta9 o (rat) ~ fl)o(rath) ~ (2.7) 

which form the basis of our method of determining the upper and lower 
bounds. 

8. In order to determine the upper and lower bounds of the pressure 
and flow functions, in (2.6) and (2.7) we must set 

dM (t, el) = P (t, a) da, ~z = O, ~ = cr , 

where the function P(t, u) - O is found from (1.6). 
The integrals in (2.6) are evaluated in accordance with the fol- 

lowing model: 

oo co 

l P (t, ~)dr ~ f ~ exp [-- m~ 2 (v)~] d~ l , s  
0 o 

co 

i . e . ,  i P (t, ~) dz = 1, etc. (a. 1) 
0 

After the necessary computations, we obtain 
cc 

e x 

Here, 

(3.2) 

co 

t __ El(__ z ) =  S e ~ x = - - ,  d ~ .  
2-r a 

x 

From (i. 7), (I. 8), (3. i), and the definition of the averaging 

operator it follows that 

TF o (rot) = ]7  (mr), T(I) o (mr) = q)~ (rot). 

Hence, from inequalities (2.7) we obtain the following estimates: 

F o (mtg) < Fz(rat ) < F o (rata) , 

q), (mtg) < O~(mt) < 0 o (ruth) ~ (3.8) 

where ta,  tg, and t h are found from (8.2). 
In Table 2, values of the dimensionless functions x a = ta/2V, Xg = 

= tg/2% and xh = th/2V are compared with the upper and lower bounds 
F+, eh+ and F_, •- of the pressure and flow functions respectively, 

for r 0 = m r = l o  and r 0=100. 
As may be seen from Table 2, the maximum difference between 

the upper and lower bounds for Fr(mt) does not exceed 10%at r0 = 
= m r  = 10 and 7% at 7"o = 10O, so that, as r o increases, the discrepancy 

Table 2 

m'c ~ tO m ' :  ~ 10 m ' :  ~ t00 

oc x a  Xh 

0 0.39 
1 i .46 
2 2.5 
3 3.5 
4 4.5 
5 5.5 
6 6.5 
7 7.5 
8 8.5 
9 9.5 

10 .0.5 

Xg 

0.21 
1.0~ 
2.0~ 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
~0.0 

0.t6 
0.73 
t.63 
2.68 
3.7 
4.7 
5.75 
6.7 
7.75 
8.8 
9.75 

F +  F -  

t.55 1.4t 
2.14 t.96 
2.38 2.28 
2.55 2.48 
2.67 2.62 
2.78 2.73 
2.84 2.80 
2.92 2.86 
2.98 2.95 
3.03 3.0t 
3.09 3.06 

m ~  ~ I00 

F +  F -  ~ +  

2.6i 2.44 0.7 
3.26 3.06 0.49 
3.52 3.4i 0.476 
3.68 3.6i 0.38 
3.81 3.75 0.358 
3.90 3.86 0..345 
4.0 3.94 0.334 
4.07 4.02 0.328 
4 . i t  4.i0 0.3t8 
4.15 4.14 0.3t2 
4.2t 4.2 J 0.308 

0.61 0.4i6 
0.455 0.322 
0.398 0.286 
0.372 0.268 
0.355 0.257 
0.34 0.25 
0.332 0.245 
0.324 0.24 
0.3i6 0.235 
0.3it  0.232 
0.306 0.229 

0.388 
0.305 
0.28 
0.264 
0.255 
0.249 
0.242 
0.238 
0.234 
0.23i 
0.228 
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Fig. 1 

diminishes. Moreover, the maximum difference between the upper 
and lower bounds for g,r(mt) does not exceed 13% at r 0 = 10 or 5% 
at % = 100, this difference also decreasing as r0 increases. 

It is clear from (8.2) that, when r 0 = 0, t a = tg = t h = t, so that the 
difference between the upper and lower bounds (3.3) also diminishes 
the direction of decreasing lag. Hence the maximum difference cor- 

responds to some small %, above and below which the estimates ap- 
proach. 

Of estimates (3.3), the simplest will be the lower, which is also 
suitable for use as an approximate evaluation of the pressure and flow 
functions. Figures 1 arid 2 show graphs of the lower bounds as a function 
of the dimensionless time to = m t  for various values of the dimensionless 
lag. 

At % = m r  -> 100, with a small error that decreases with time, 
the lower bound of the pressure function can be represented in the 
form 

F o (mtg) ~ 1  h [In (4/y) m t - -  E i ( - - t / z ) ] .  

This approximation of the function Fr(mt)  was obtained in [7] by 
another means. 

An investigation of the curves presented in Fig. 1 reveals that, 
except for the case r = 0, the pressure function has a discontinuity at 
t= 0, which is greater, the greater the lag. Moreover, at relatively 
large m r  the pressure function curve has a clearly expressed horizontal 
plateau whose length depends directly on the lag, after which it tends 
fairIy rapidly to the common asymptote In(4/y)mt/2. 

Thus, a pressure step following a sharp change in flow rate (up or 
down) is a characteristic sign ("indicator") of a porous-fractured bed, 
whose joints have negligibly smalI compressibility. Curves of this 
kind are encountered in connection with the investigation of certain 
injection wells in the Kyurovdag field of the Azerbaidzhanian SSR 
(Fig. 3). 

4. In order to obtain an approximate expression for the pressure 
function of a porous-fractured bed we will use the averaging method 
[6], which has proved suitable for solving many problems of nonstation- 

eeol I I I e ] 
e coo ~ee eea ,~ae /eee 

Fig. 2 

ary seepage in a porous bed. Although its formal application to the 
present problem leads to serious difficulties, these can be avoided as 

described below. 
We introduce the dimensionless variables 

k =  t ~__ r V ( F , , s  t) 

v ' ~ ' I ~ Aqo 

and for simplicity assume that the radius of the well is negligibly small. 
Then, problem (1) reduces to the following: to solve the equation 

V . v _ O V  VO2V (4.1) 
0;L 0s 

with the initial and boundary conditions 

v ( L  ~ =  o ) = o ,  

- (~ o v / o ~ ) ~ = o  = t ,  v (~ = ~,  ~) = o.  

We introduce the function 

V (L ~) = w (L ~) + ow (~, ~)/& (4. ,2) 

which, in accordance with [1], is proportionaI to the pressure in the 
porous blocks, whereas the function V is proportional to the pressure 

in the joints. It is directly verifiable that the function W satisfies the 
differential equation 

V ~ W  = d W  / & - -  O V 2 W  / o;v , (4.3) 

which must be soived for the initial and boundary conditions 

w(r  ~ . = 0 ) = 0 ,  ( ~ ~ 1 7 6 1 7 6 1 6 2 1 7 6  l, 

if 

w (~ = ~ ,  ).) = o. (4.4) 

q (~) = - ~ o w  / o~ ,  (4 .  ~) 

we can rewrite the first of the boundary conditions of (4.4) in the form 

Oq/Os + q = t (4.6) 

Solving this differential equation on the assumption that 

q (0) = o,  (4.7) 

which is consistent with the physical conditions of the problem, we 
find that 

q (~) = i - e -x (4.8) 

Following the method of averaging, we rep!ace tire right-hand 
side of (4.3) with the mean: 

~k~ - - / O W  __ O V 2 W \  ( 4 . 9 )  
~' ' - -  \ T f  & -/ 

In (4.9), the corner brackets denote the averaging operation, ap- 
plicable to any function f(g) defined for g > 0, 

R 
2 

</(~)> = R7 ~ J (r ~dr (4.10 
o 

Thus, comparing (4.9) with (4.3), we have V2W = FC,.) in the 

region 0 -~ ~ "< R(~) with moving boundary R(X) on which the following 
conditions are satisfied: 

~p, atm 

b 

a 

0 ~ s  
8 fZ 

Fig. 3 

W (R,  ~) = B OW ~OR = O. ( 4 . 1 1 )  

From (4.8) and (4. i0) we find that 

F + d F  I d~, = < O W /  0X>. (4.12) 

The functiou <OW / 0~,> is obtained from (4.10) and (4.11) as 
follows: integrating (4. i0) with respect to ~ in the region 0 -< ~ -< R we 

have 

- -  ~ O W l  O~ = I /2"F(B 2 - -  ~2), (4.13) 
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Here, at g = 0, using (4.5), 

q (~.) = 1/~ FR~. (4.14) 

Subsequent integration of (4. 13) using (4.14) 1cads to the resuIt 

W(~, ;~)~-q(~')[ l n R ~ - - ~ t  (l--~)], (4.15) 

Differentiating (4.15) with respect to k and then averaging, we 
obtain 

/ o w \  i R~ /2_ 
\ o - f / =  -g d~ (qR'-). (4.16) 

Substituting (4.16) into (4.12) and replacing F and dF/dK with the 
expressions obtained from (4.14), we find, using (4.6) in the result, 
the differential equation 

d 8 (l q= e -x) (4.17) 
d--~ (qRe) : l + SR -~ 

Let K <- K 1. On substituting RGt) for R(K) in (4.1~), in view of the 
physically obvious inequality R(X) -< R(kj ,  the right-hand side of the 
equat ionwil tbe too great. Then, in accordance with S. A. Chaplygin's 
theorem of differential inequalities for obtaining the upper bound of the 
function R(X) we have the differential equation 

d ( q R g =  8 ( t §  -z) 
d~, t -k 8R ~ (~,D' 

Integrating this equation between the l imits (0, kl), bearing in 
mind the condition q(0) = 0, we find that 

8;h 
//~" ( M )  - -  t - -  e -~ '"  

Since K t is an arbitrary quantity, the above equation will hold for 
all K and gives the upper bound 

/~  (~,) -~ 8~, 

t - -  e - x  ( 4 . 1 8 )  

Substituting (4.18) into (4.15) and neglecting terms that are small 
compared with R, we finally obtain 

W (~1; ~) = 2 ( i  _ e-z) t in  8~. i], ~i~ = rl_~ 2 
~? ( l  - -  e - z )  z ~  ' 

Hence, in accordance with (4.2), we find, converting directly to 
dimensional variables, that 

st 
$'~ (rot) ~ In i - -  exp (-- t / "~) + 

2 t \ 

For mt  >-- 100 and mT --> 100, this approximation is very close to 
the upper bound previously obtained; however, at small  values of the 
indicated parameters it ceases to be satisfactory. 
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